mardi 26 mars 2019

Advanced Physical Chemistry




Miscellaneous

Some P. Chem. and Quantum Chemistry Texts
Periodic TableUnit Conversions and Physical constants 

Exam Schedule

(1) Exam 1 - Friday, February 19*
(2) Exam 2 - Friday, March 25*
(3) Exam 3 - Friday, April 22*
(F) Final Exam - Monday, May 9: 10:30 AM to 12:30 PM*
*Exams 1-3 will start at 11:00 AM and continue to 12:50 PM
to provide more time. We will also add additional time
for the Final Exam

Last Year

(1) Exam 1 and Solutions
(2) Exam 2 and Solutions
(3) Exam 3 and Solutions
(F) Final Exam and Solutions 

This Year

(1) Exam 1 - Solutions and Grades
(2) Exam 2 - Solutions and Grades
(3) Exam 3 - Solutions and Grades
(F) Final Exam - Solutions and Grades

See Archive for Chapters 1-5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

spooky_1.jpg (298663 bytes)
Course Webmaster
Spooky McSchwartz, Esquire
[aka The Spookman]

spooky_1.jpg (298663 bytes)
Examination Administrator
Sapphire T. McGillicuddy
[aka Saffy]
[aka Madam Evil]



Reference: http://chem.unt.edu/~mschwart/chem5210/

mercredi 20 mars 2019

Molecular Physics and Molecular Structure


Lecture 26 Title: Fundamentals of the Quantum Theory of molecule formation

Lecture 27 Title: Understanding of Molecular Orbital

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra

Lecture 29 Title: The rotational-vibrational spectra

Lecture 30 Title : Raman Scattering

Lecture 31 Title: Vibrational structure of electronic transition

Lecture 32 Title: Rotational structure of particular electronic transition

Lecture 33 Title: Intensity distribution in the electronic vibrational structure

Lecture 34 Title: Term values of the electronic states of the molecule


Reference: https://nptel.ac.in/courses/115101003/1

Atomic Physics and Atomic Structure



Lecture 7 -Title: Quantum Mechanical treatment of One-electron atoms

Lecture 8 -Title: Quantum Mechanical treatment of One-electron atoms : radial part 

Lecture 9 :Title : Interpretation of wavefunction and modification forAlkali atoms

Lecture 10 : Title : ALKALI SPECTRA

Lecture 11 Title :  Helium Atom

Lecture 12 Title: Central Field Approximation

Lecture 13 : Title : Coupling of angular momentum 

Lecture 14 Title: Evaluation of Terms of an atom 

Lecture 15 Title: Evaluation of coupled wavefunction

Lecture 16 Title: Wigner-Eckart theorem

Lecture 17 Title :Fine structure : Spin-orbit coupling

Lecture 18 Title : Fine Structure : multi-electron atoms

Lecture 19 Title: j-j coupling

Lecture 20 Title: Effect of Static Magnetic field on the spectral lines

Lecture 21 Title: Hyperfine Structure of Spectral Lines

Lecture 22 Title: Zeeman effect in Hyperfine structures

Lecture 23 Title: Electron Spin resonance spectroscopy

Lecture 24 Title : Nuclear magnetic resonance spectroscopy (N.M.R)

Lecture 25 Title : X- Ray Spectra






Reference : https://nptel.ac.in/downloads/115101003/

History of Atomic & Molecular Physics and basic backgrounds



Lecture – 1 TITLE: Introduction to Atomic and Molecular Physics

Lecture – 2 TITLE: A brief history of the development of structure of atom

Lecture – 3 TITLE: Formulation of Old Quantum theory

Lecture – 4 TITLE: Quantization of radiation and matter: Wave-Particle duality

Lecture – 5 TITLE: Electromagnetic Radiation – Matter Interactions

Lecture – 6 Title: Radiative transitions and spectral broadening



Reference: https://nptel.ac.in/downloads/115101003/

mardi 19 mars 2019

Quantum Chemistry ( Professor S. M. Blinder )

This course is designed to introduce students to a thorough, research-oriented view of Physical Chemistry. Required for Honors Chemistry concentrators. Graduate students take course as Chemistry 570.
This is the second of the three-term physical chemistry sequence Chemistry 260/461/463. Chemistry 461 builds on the introduction to quantum mechanics that was begun in Chemistry 260. Students will solve the Schrödinger equation in 1-, 2-, and 3-dimensions for several problems of interest in chemistry, including the particle-in-a-box, harmonic oscillator, rigid rotor, and hydrogen atom. Further topics include atomic structure, valence-bond and molecular orbital theories of chemical bonding and group theory. The concepts of quantum theory are applied to molecular spectroscopy and nuclear magnetic resonance.
Prerequisites & Distribution: Chem. 260, Phys. 240 (or 260), and Math. 215. (3). (Excl). (BS). Credits: (3).
Textbook: This Website. Supplementary reference: Atkins, Physical Chemistry, 6th or 7th Edition (Freeman, 1998, 2002), Chapters 11-18.
Meetings: M, W, F 9-11 am, Rm 1636.
Examinations (open notes format):
Exam 1: Wednesday, May 15 (30% of grade).
Exam 2: Monday, June 3 (30% of grade).
Final Exam: Monday, June 17 (40% of grade)

Tentative Schedule:

 DATES

 READING

 TOPICS
 May 1Chaps 1, 2Quantum Theory; Waves & Particles
 May 3-6Chap 3Q M of Some Simple Systems
 May 8Chap 4Principles of Quantum Mechanics
 May 10Chap 5Harmonic Oscillator
 May 13Chap 6Angular Momentum
 May 15EXAM 1Covering Chaps 1-6
 May 17-20Chap 7Hydrogen Atom
 May 22-24Chap 8Helium Atom
 May 29Chap 9Atomic Structure; Periodic Law
 May 31Chap 10The Chemical Bond
 June 3EXAM 2Covering Chaps 6-10
 June 5Chap 11Molecular Orbital Theory
 June 7-10Chap 13Molecular Spectroscopy
 June 12-14Chap 14Nuclear Magnetic Resonance
 June 17FINAL EXAMCovering everything



Front Cover Physical Constants
Chap 1. Atoms and Photons: Origin of the Quantum Theory
Supplement 1A. Maxwell's Equations
Supplement 1B. Planck Radiation Law
Chap 2. Waves and Particles
Double Slit Diffraction Experiment
Review of Complex Numbers
Exercises 2
Chap 3. Quantum Mechanics of Some Simple Systems
Exercises 3
Chap 4. Principles of Quantum Mechanics
Exercises 4
Chap 5. Harmonic Oscillator
Supplement 5. Gaussian Integrals
Exercises 5
Chap 6. Angular Momentum
Supplement 6. Curvilinear Coordinates
2001 Exam 1 & Answers
2002 Exam 1 & Answers
Chap 7. Hydrogen Atom
Exercises 7
Chap 8. Helium Atom
Exercises 8
Chap 9. Atomic Structure & the Periodic Law
Dynamic Periodic Table
Exercises 9
Chap 10. The Chemical Bond
Exercises 10
2002 Exam 2 & Answers
Chap 11. Molecular Orbital Theory
Diatomic Table
Exercises 11
Chap 12. Molecular Symmetry (omitted this term)
Chap 13. Molecular Spectroscopy
Exercises 13
Chap 14. Nuclear Magnetic Resonance
Exercises 14
Back Cover Periodic Table
2001 Final Exam & Answers
2002 Final Exam & Answers



ٌReference: http://www.umich.edu/~chem461/

mardi 5 mars 2019

PHYSICAL CHEMISTRY II (QUANTUM MECHANICS) SITE

CHEMISTRY 4502
PHYSICAL CHEMISTRY II (QUANTUM MECHANICS)
SECTION 1
M, W, F 10:10 - 11:00 AM
Spring Semester 2006

Instructor: Professor Christopher Cramer 
Paraprofessionals: Kin-Yiu Wong, and George Giambasu

Course Information


Sample Exams

  • Sample Exam 1 and its answer key.
  • Answers to additional example problems for first exam (questions found at end of Lecture 8).
  • Sample Exam 2 and its answer key.
  • Answers to example problems for second exam (questions found at end of Lecture 16). Also, the formula table that will be provided with the exam.
  • Sample Exam 3 and its answer key.
  • Answers to example problems for third exam (questions found at end of Lecture 24). Also, the formula table that will be provided with the exam.
  • Sample Exam 4 and its answer key.
  • Answers to example problems for fourth exam (questions found at end of Lecture 33). There is no formula table associated with this exam.

  • Sample Final Exam and its answer key.

    Exams and Homework Keys (see syllabus for dates)

    A map to the Science Classroom Bldg may be found here.The final takes place from 10:30 to 12:30 AM Wednesday May 10th.
    • Exam 1 in versions abc, and d (version letter appears at upper left of front page) and its answer keys in versions abc, and d.
    • Exam 2 in versions abc, and d (version letter appears at upper left of front page) and its answer keys in versions abc, and d.
    • Exam 3 in the only version, a, b, c, and d, and its answer key in the only version, aNote that question 8 of this exam was originally graded with answer (d) as correct. However, it is answer (b) that is correct. If you lost points on this question, please bring your exam to Professor Cramer and your score will be adjusted upwards 6 points (i.e., this question is eliminated and the exam will begin from a base of 6 instead of 0).
    • Exam 4 in versions abc, and d (version letter appears at upper left of front page) and its answer keys in versions abc, and d. Note that the problem listed as having answer GG is NOT really answered correctly (GG was "8", but the answer, "9", was not supplied). This problem was not graded and as a result all exams began from a base of 3 points.
    • Final Exam in versions abc, and d (version letter appears at upper left of front page) and its answer keys in versions abc, and d. Note that versions a and b had two possible correct answers in the multiple choice question about the parity operator (because of a misprint not present in the answer keys). Either choice was given full credit. For a summary of course grades, see the note above in the Course Information section.


    Useful Links

    You are welcome to alert me to links that you think would benefit the class by being included in the below listing.
    • A handy integral table (many others can also be found on the web).
    • CHEM 3502/4502, Spring 03 (Professor Jiali Gao, instructor)
    • HyperPhysics pages at Georgia State University. The "Quantum Physics" balloon in the top splash-page web is the most relevant starting point for this class, and there is a nice alphabetized index of topics in the right frame of the page.
    • Mathworld and Oviedo University have some very nice plots of the square moduli and real and complex components of the complex and real spherical harmonics.
    • The firstsecondthird, and fourth links visited in class when discussing interstellar microwave spectroscopy.
    • Dauger Research page with lovely pictures of hydrogenic orbitals and downloadable shareware (Mac only) to generate 3D orbital images and manipulate them in realtime.

    Published by the Department of Chemistry.
    Updated May. 11, 2006, CJC
    © 2003, 2004, 2005, 2006 by the Regents of University of Minnesota, Department of Chemistry. All rights reserved.
    The University of Minnesota is an equal opportunity educator and employer.


  • Reference:  http://pollux.chem.umn.edu/4502/


    PHYSICAL CHEMISTRY II (QUANTUM MECHANICS) SYLABUS




    To download the sylabus click on the following link:





    mardi 12 février 2019

    Atomic Movies Demonstration

    How to use the animator
    Run the demonstration (about 120 kBytes data) 
    Run two animations in one window (about 240 kBytes data) (Best on newer machines and larger screens, minimum 800 pixels wide). If you use Microsoft Exploder, please read the tips, part about two animations in one frame. 
    Explanation of the Atomic Movies 
    Some tips for collision physicists 
    Article by Mette Machholm and Christine Courbin who used the movies in research

    Entry point of the normal presentation of Machholm's and Courbin's calculations


    Authors: 
    Irina Otdelnova, L. Kocbach, present setup 
    Mette Machholm and Christine Courbin, Wavefunction Calculations 
    Martin Holecko, The javascript animator used in the linked animations (Prague) 
    Ladislav Kocbach, The present modification of Holecko's animator, and for the Atomic movies the original animator for X-windows, Mac and DOS (Bergen)

    jsImagePlayer 1.0 (C) 1996 by Martin Holecko of Computer Graphics Group September 1996, PRAHA, Czech Republic  Image Player modified by L. Kocbach.

     http://www-troja.fjfi.cvut.cz/~ladi/ATCOL/demo.html

    Some demonstrations of Atomic Movies based on thesis of Irina Otdelnova

    Classical and quantum descriptions

    Atomic Physics and Physical Optics

    Physical Optics Part PHYS261 can be found bellow


    Atomic physics Part PHYS261
    • 0 - Physics of atoms - Introduction - Hydrogen-like
    • 1 - Helium and two electron atoms
    • 2 - Many electron atoms
    • 3 - Light - Atom Interaction

    0. Physics of atoms - Introduction


    History
    Hydrogen and hydrogen-like ions
    Quantum Mechanics
    Textbook facts, Schrödinger Equation
    Wavefunctions
    Spectra, Selection rules
    Rydberg atoms

    1. Helium and two electron atoms


    Coordinate system, Schrödinger Equation
    Two electrons and spin
    Helium spectra
    Symmetry and Antisymmetry of wavefunctions
    Parahelium and Orthohelium
    Approximations to describe helium atom
    Evaluation of repulsion term - Radial Integral
    Exchange interaction
    Variational method
    Doubly excited states of Helium

    2. Many electron atoms

    Pauli-principle    and Hund’s rule
    Antisymmetric functions for n-particles
    Filling Shells
    Ionization energies
    Hartree Method - Selfconsistent field
    Configurations
    Screened potential and Centrifugal barrier
    Slater Determinants
            Helium example
            Lithium example - Counting nonzero terms
    Schrödinger equation from variational method
    Variational method - deriving Hartree-Fock Equations
    Total energy and the selfconsistent orbital energies
    Evaluation of electron repulsion  
    Configuration mixing

    3. Light - Atom Interaction

    Overview of physical phenomena involved
    Time dependent QM
    Quantum Theory of Electromagnetic Field
    Charged Particles In an Electromagnetic Field
    Time dependent QM
    Two-well problem vs One level in continuum
    Time-Dependent Schrödinger Equation Perturbation theory for TDSE
    Dirac delta-function
    Fermi Golden Rule
    Density of States
    Constant rate and exponential decay
    Line width from exponential decay
    Golden Rule Simulator Time-Dep.  Schrödinger Eq. in Simulator
    Quantum Theory of Electromagnetic Field
    Eigenmodes for coupled vibrations.
    Algebraic Method for Harmonic Oscillator
    Quantum Theory of extended systems - fields  

    Charged Particles In an Electromagnetic Field 
    The Hamiltonian of Interaction

    Emission of Radiation by Excited Atom
    The matrix element reduction
    Dipole Approximation
    Detailed Evaluation of Emission rate
    Final W = 1 / T result ( T - lifetime )
    Stimulated emission

    Outline of the Course - Physical Optics part 

    Study materials:

    There will be distributed detailed notes during the lecture period (for both parts).
    References to other books and texts will be given throughout the lectures.
    It is not necessary to purchase a specific book.

    Exam:

    The examination is oral and will take place in the first part of December. The precise date will be agreed on,
    depending on the needs of the students.
    1. Maxwell’s Equations
      • Linearity and Superposition Principle
      • Phase Velocity and Group Velocity
    2. Pulse Propagation in a Dispersive Medium
    3. Harmonic Plane Waves - Polarisation
    4. Reflection and refraction of a plane wave
    5. Generalisation of the reflection law and Snell’s law
    6. Reflectance and transmittance
    7. Unpolarised light (natural light)
    8. Rotation of the plane of polarisation upon reflection and refraction
    9. Boundary Value Problems
    10. Rayleigh-Sommerfeld’s and Kirchhoff’s diffraction integrals
    11. Diffraction problems
      • Fresnel diffraction
      • Fraunhofer diffraction
      • Circular aperture
      • Rectangular aperture
    12. Focusing and imaging
      • Aberrations
    13. Electromagnetic radiation problems
      • Field radiated by a localised source
      • Field due to a point source - Green’s function
      • Field radiated by a dipole
      • Retarded solution of the wave equation
    14. Asymptotic diffraction theory

    to index 


    Reference: http://web.ift.uib.no/AMOS/PHYS261/2012_08_21/index.html



    Web-Based Quantum Mechanics Course


    List of Modules
    • Review: Square Potentials

      • A particle in a time-independent scalar potential, potential steps, square wells, d-function potentials
    • The WKB Approximation

      • The WKB approximations for bound states
    • Mathematical Foundations of Quantum Mechanics

      • Linear vector spaces, Dirac notation, subspaces, linear operators, Hermitian operators, unitary operators, function of operators, representations in state space, change of representation, the eigenvalue problem, commuting observables, the |r> and |p> representations
    • The Postulates of Quantum Mechanics

      • Postulates, mean value and root-mean-square deviation, conservation of probability, the evolution operator
    • Representations

      • The Schroedinger picture, the Heisenberg picture, the interaction picture, time-dependent perturbation theory, the evolution of the mean value of an observable, interference effects
    • The Density Matrix

      • A statistical mixture of states, the density operator, the physical meaning of the density matrix and the density operator
    • The Harmonic Oscillator

      • The eigenvalues and eigenfunctions of the 1D harmonic oscillator, the mean value and root mean square deviation of X and P, coherent states, tensor product spaces, the 3D harmonic oscillator
    • Two-Level Systems (A Spin 1/2 particle)

      • Spin, a spin 1/2 particle in a uniform magnetic field, a general study of a two-level system
    • Two Spin 1/2 particles

      • The tensor product space of two spin 1/2 particles
    • Angular Momentum

      • Commutation Relations, basis states, orbital angular momentum, the spherical harmonics
    • Symmetries and Constants of Motion

      • The translation operator, the rotation operator, rotation of observables, scalar and vector observables, spinors, the rotation operator for a spin 1/2 particle

    Referencehttp://electron6.phys.utk.edu/qm1/Modules.htm



    • Hydrogenic Systems

      • The hydrogen atom, eigenvalues and eigenfunctions, spectroscopic notation, hydrogenic systems.
    • Diatomic Molecules

      • Motion of the nuclei, vibrational-rotational levels.
    • Addition of Angular Momentum

      • Clebsch-Gordan coefficients, adding more than two angular momenta, rotation matrices, transformation properties of the spherical harmonics, the Wigner-Eckart theorem, the projection theorem.
    • Gauge Transformations, Flux Quantization, Propagator

      • Gauge transformations in electromagnetism, the Aharonov-Bohm effect, magnetic monopoles, propagator and path integrals.
    • Periodic Systems

      • Periodic and continuous systems, Electrons in a solid.
    • Scattering

      • Scattering by a central potential, free spherical waves, partial waves, phase shifts,   the scattering cross section near a resonance, scattering length and effective range, frame transformations, integral scattering equation for stationary states, the Born approximation, the Yukawa potential, the Coulomb potential.

    samedi 26 janvier 2019

    Statistical field theory


    Book cover Statistical field theory

    Statistical field theory

    A comprehensive text book covering the field of statistical physics.
    Categories:Physics\\Thermodynamics and Statistical Mechanics
    Year:1988
    Language:english
    Pages:368
    ISBN 10:0738200514
    ISBN 13:9781429485852
    Series:Frontiers in Physics 66
    File:DJVU, 4.10 MB

    Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics


    Book cover Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics

    Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics

    This book provides a thorough introduction to the fascinating world of phase transitions as well as many related topics, including random walks, combinatorial problems, quantum field theory and S-matrix. Fundamental concepts of phase transitions, such as order parameters, spontaneous symmetry breaking, scaling transformations, conformal symmetry, and anomalous dimensions, have deeply changed the modern vision of many areas of physics, leading to remarkable developments in statistical mechanics, elementary particle theory, condensed matter physics and string theory. This self-contained book provides an excellent introduction to frontier topics of exactly solved models in statistical mechanics and quantum field theory, renormalization group, conformal  Read more →
    Categories:Physics\\Thermodynamics and Statistical Mechanics
    Year:2009
    Language:english
    Pages:672
    ISBN 13:978-0-19-954758-6
    Series:Oxford Graduate Texts
    File:PDF, 4.34 MB

    Introduction to Statistical Field Theory


    Book cover Introduction to Statistical Field Theory

    Introduction to Statistical Field Theory

    Knowledge of the renormalization group and field theory is a key part of physics, and is essential in condensed matter and particle physics. Written for advanced undergraduate and beginning graduate students, this textbook provides a concise introduction to this subject. The textbook deals directly with the loop-expansion of the free-energy, also known as the background field method. This is a powerful method, especially when dealing with symmetries, and statistical mechanics. In focussing on free-energy, the author avoids long developments on field theory techniques. The necessity of renormalization then follows.
    Categories:Physics\\Thermodynamics and Statistical Mechanics
    Year:2010
    Edition:1
    Language:english
    Pages:176
    ISBN 10:0511789548
    ISBN 13:9780511789540
    File:PDF, 1.28 MB

    jeudi 17 janvier 2019

    Experimental procedure to deduce the Stefan-Boltzmann law

    Object:

     Measure how the current through an electric light bulb varies as the applied voltage is changed. This will allow you to establish Stephan's Law for Black Body Radiation. 

    Introduction: 

    When an electric current flows through the filament in a light bulb the filament heats up. The filament loses heat in two ways: electromagnetic radiation (mainly visible light and invisible heat radiation) and conduction (through the base of the bulb). The heat conducted away from the filament increases linearly with filament temperature. The air in the bulb is pumped out during manufacture so little heat is lost by convection.




    To download the file click on the link below:

    http://www.iiserpune.ac.in/~bhasbapat/phy221_files/StephansLaw.pdf

    Mathematical Physics of BlackBody Radiation


    Contents 

    I Old Picture 3
    1 Blackbody Radiation 5
    1.1 Birth of Modern Physics . . . . . . . . . . . . . . . . . . . . . 5
    1.2 Planck, Einstein and Schr¨odinger . . . . . . . . . . . . . . . . 6
    1.3 Finite Precision Computation . . . . . . . . . . . . . . . . . . 7
    2 Blackbody as Blackpiano 9
    3 Interaction Light-Matter 13
    4 Planck-Stefan-Boltzmann Laws 17
    4.1 Planck’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
    4.2 Stefan-Boltzmann’s Law . . . . . . . . . . . . . . . . . . . . . 18
    4.3 The Enigma of the Photoelectric Effect . . . . . . . . . . . . . 23
    4.4 The Enigma of Blackbody Radiation . . . . . . . . . . . . . . 24
    4.5 Confusion in Media . . . . . . . . . . . . . . . . . . . . . . . . 24
    4.6 Confessions by Confused Scientists . . . . . . . . . . . . . . . 25
    4.7 Towards Enigma Resolution . . . . . . . . . . . . . . . . . . . 27
    5 Planck/Einstein Tragedy 29
    5.1 James Jeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
    5.2 Max Planck . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
    5.3 Planck and Einstein . . . . . . . . . . . . . . . . . . . . . . . . 32
    6 Classical Derivation of Rayleigh-Jeans Law 35
    6.1 Counting Cavity Degrees of Freedom . . . . . . . . . . . . . . 35
    6.2 Dependence of Space Dimension . . . . . . . . . . . . . . . . . 36
    7 Statistics vs Computation 37
    7.1 Cut-Off by Statistics . . . . . . . . . . . . . . . . . . . . . . . 37
    7.2 Cut-Off by Finite Precision Computation . . . . . . . . . . . . 37

    II New Analysis 39
    8 Wave Equation with Radiation 41
    8.1 A Basic Radiation Model . . . . . . . . . . . . . . . . . . . . . 41
    9 Spectral Analysis of Radiation 45
    9.1 Basic Energy Balance R = F . . . . . . . . . . . . . . . . . . . 45
    9.2 Rayleigh-Jeans Law . . . . . . . . . . . . . . . . . . . . . . . . 48
    9.3 Radiation from Near-Resonance . . . . . . . . . . . . . . . . . 49
    9.4 Thermal Equilibrium from Near-Resonance . . . . . . . . . . . 49
    9.5 The Poynting Vector vs ∥f∥ 2 . . . . . . . . . . . . . . . . . . . 50
    10 Acoustic Near-Resonance 53
    10.1 Radiation vs Acoustic Resonance . . . . . . . . . . . . . . . . 53
    10.2 Resonance in String Instrument . . . . . . . . . . . . . . . . . 53
    10.3 Fourier Analysis of Near-Resonance . . . . . . . . . . . . . . . 55
    10.4 Application to Acoustical Resonance . . . . . . . . . . . . . . 56
    10.5 Computational Resonance . . . . . . . . . . . . . . . . . . . . 57
    11 Model of Blackbody Radiation 63
    11.1 Finite Precision Computation . . . . . . . . . . . . . . . . . . 63
    11.2 Radiation and Heating . . . . . . . . . . . . . . . . . . . . . . 64
    11.3 Planck as Rayleigh-Jeans with Cut-off . . . . . . . . . . . . . 65
    11.4 Planck’s Law: R + H = F . . . . . . . . . . . . . . . . . . . . 65
    11.5 Connection to Uncertainty Principle . . . . . . . . . . . . . . . 66
    11.6 Stefan-Boltzmann’s Law . . . . . . . . . . . . . . . . . . . . . 66
    11.7 Radiative Interaction . . . . . . . . . . . . . . . . . . . . . . . 67
    11.8 Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
    11.9 Radiative Cooling . . . . . . . . . . . . . . . . . . . . . . . . . 69
    11.10Interaction by Shared Force . . . . . . . . . . . . . . . . . . . 69
    11.11Generic Nature of Blackbody . . . . . . . . . . . . . . . . . . 70
    11.12Cut-Off by Residual Stabilization . . . . . . . . . . . . . . . . 71
    11.13Cordination Length . . . . . . . . . . . . . . . . . . . . . . . . 71
    12 Universal Blackbody 73
    12.1 Kirchhoff and Universality . . . . . . . . . . . . . . . . . . . . 73
    12.2 Blackbody as Cavity with Graphite Walls . . . . . . . . . . . 75
    13 Model of Universal Blackbody 77
    14 Radiative Heat Transfer 79
    14.1 Stefan-Boltzmann for Two Blackbodies . . . . . . . . . . . . . 79
    14.2 Non-Physical Two-Way Heat Transfer . . . . . . . . . . . . . . 80
    15 Greybody vs Blackbody 83
    16 2nd Law of Radiation 85
    16.1 Irreversible Heating . . . . . . . . . . . . . . . . . . . . . . . . 85
    16.2 Mystery of 2nd Law . . . . . . . . . . . . . . . . . . . . . . . 86
    16.3 Stefan-Boltzmann Law as 2nd Law . . . . . . . . . . . . . . . 86
    17 Reflection vs Blackbody Absorption/Emission 87
    18 Blackbody as Transformer of Radiation 89
    19 Hot Sun and Cool Earth 91 19.1 Emission Spectra . . . . . . . . . . . . . . . . . . . . . . . . . 91
    20 Blackbody Dynamics 93
    20.1 Recollection of Model . . . . . . . . . . . . . . . . . . . . . . . 93
    20.2 Radiative Interaction of Two Blackbodies . . . . . . . . . . . . 95
    21 The Photoelectric Effect 97
    21.1 Nobel Prize to Einstein . . . . . . . . . . . . . . . . . . . . . . 97
    21.2 The photoelectric effect I . . . . . . . . . . . . . . . . . . . . . 97
    21.3 Remark on Viscosity Models . . . . . . . . . . . . . . . . . . . 101
    21.4 The Photolelectric Effect II . . . . . . . . . . . . . . . . . . . 101
    22 The Compton Effect 103
    22.1 The Compton Effect I . . . . . . . . . . . . . . . . . . . . . . 103
    22.2 The Compton Effect II . . . . . . . . . . . . . . . . . . . . . . 103


    To download the course click on the link below:

    http://www.csc.kth.se/~cgjoh/ambsblack.pdf

    jeudi 10 janvier 2019

    The Theory Of Heat Radiation (1914)

    Author: Max Planck 



    Translator: Morton Masius 

    Release Date: June 18, 2012

    [EBook #40030]

    Language: English


    PART I FUNDAMENTAL FACTS AND DEFINITIONS 

    I. General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
    II. Radiation at Thermodynamic Equilibrium. Kirchhoff’s Law. Black Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27


    PART II DEDUCTIONS FROM ELECTRODYNAMICS AND THERMODYNAMICS 

    I. Maxwell’s Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
    II. Stefan-Boltzmann Law of Radiation . . . . . . . . . . . . . . . . . . . . . . . . 69
    III. Wien’s Displacement Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
    IV. Radiation of Any Arbitrary Spectral Distribution of Energy. Entropy and Temperature of Monochromatic Radiation . . . . 104
    V. Electrodynamical Processes in a Stationary Field of Radiation 124

    PART III ENTROPY AND PROBABILITY 

    I. Fundamental Definitions and Laws. Hypothesis of Quanta . . 133
    II. Ideal Monatomic Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
    III. Ideal Linear Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
    IV. Direct Calculation of the Entropy in The Case of Thermodynamic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

    PART IV A SYSTEM OF OSCILLATORS IN A STATIONARY FIELD OF RADIATION 

    I. The Elementary Dynamical Law for The Vibrations of an Ideal Oscillator. Hypothesis of Emission of Quanta . . . . . . . . . . . . . . 177
    II. Absorbed Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
    III. Emitted Energy. Stationary State . . . . . . . . . . . . . . . . . . . . . . . . . . 189
    IV. The Law of the Normal Distribution Of Energy. Elementary Quanta Of Matter and Electricity . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    PART V IRREVERSIBLE RADIATION PROCESSES 

    I. Fields of Radiation in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
    II. One Oscillator in the Field of Radiation . . . . . . . . . . . . . . . . . . . . 230
    III. A System of Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
    IV. Conservation of Energy and Increase Of Entropy. Conclusion 241
    List of Papers on Heat Radiation and the Hypothesis of Quanta by the Author . . . . . . . . . . . . 255
    Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258


    To download the book click on the link below:

    https://www.gutenberg.org/files/40030/40030-pdf.pdf


    dimanche 6 janvier 2019

    Courses of Mechanics



    (UCSD Physics 110B)





    Jim Branson 2012-10-21

    PHYS5660 Semiconductor Physics and Devices (Download Area)

      Front Matter Assessment Modes - Contacts - Academic Honesty Announcement Class Notes Ch I - The Basics and What we are Intereste...